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A systematic shooting scheme is developed to solve a cascade of 
boundary value problems obtained from a small-parameter expansion 
of the full partial differential system. The sequence of solutions and the 
associated solvability conditions can be obtained simultaneously by a 
method without having to solve an adjoint boundary problem inde- 
pendently. © 1994 Academic Press, Inc. 

1. INTRODUCTION 

Many vibrational problems of continuous systems and 
pattern-forming flows possess small parameters. In many 
instances the solution dependency on these parameters is 
desired and the perturbational technique can be employed. 
Some well-known examples are: the weakly nonlinear solu- 
tions slightly supercritical or subcritical of the threshold; the 
solutions of the onset of pattern instabilities subject to a 
small-amplitude parametric forcing; and the solutions of 
boundary value problems in the small parameters based on 
the normal-mode expansion from the zero-parameter solu- 
tions. In any case, if L represents the state operator, v is the 
solution vector, r is the control, and e is the small 
parameter, then the perturbation scheme is initiated by the 
following expansions: 

L = L o + e L  1 + 8 2 L 2  + . . .  , 

V = VO 2t-SV1 ~- ~2V2 --~ . . .  , 

r = r  o + e r  l +e2r  2 +  . . . .  

(1) 

Each order of balance in e yields a linear boundary value 
problem, and the sequence of boundary problems has 
to be solved in cascade. Usually, only the O(e °) problem 
will be homogeneous; the higher-order problems will be 
inhomogeneous. The inhomogeneous terms are comprised 
of functions of the predecessor solutions in the sequence. 
The homogeneous operator in each order may or may not 
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be the same as the operator in the lowest order. In case it is 
the same, a solvability condition will be required. 

Traditionally, boundary value problems employing per- 
turbational techniques for the complete solutions are very 
restricted. As numerical methods become widely used, com- 
putational methods permitting a systematic treatment of the 
problems become more useful. These methods typically 
have less restrictions on geometries, material properties, 
and the function types of the explicit solutions. This paper 
is to provide a generalized shooting technique in such a 
computational direction. The advantages of this scheme 
over other conventional shooting schemes are: (i) it is 
designed to give a convenient treatment of a sequence of 
boundary-value problems. The approach treats the problem 
as many smaller problems, thus easing the requirement for 
a large computer storage. In many conventional schemes, 
large errors may be incurred in the boundary matching 
conditions due to discretization errors and sensitivity of the 
solvability conditions, unless the step size is sufficiently 
small. In this scheme, the solutions appear to be less 
sensitive to the step size. (ii) The scheme is applicable 
regardless of whether the controls appear in the governing 
equation or in the boundary conditions. It treats different 
cases of combinations of homogeneous and inhomogeneous 
governing equation and boundary conditions. In principle, 
the homogeneous and inhomogeneous equations and 
boundary conditions can be mutually transformed. The 
flexibility of our scheme has rendered the need for the 
transformations in the pre-computing stage unnecessary. 
(iii) Since most systems encountered physically are nonself- 
adjoint, this scheme provides a simple way to treat the 
adjoint problem in the boundary conditions. A full inde- 
pendent adjoint solution analogous to the lowest order 
solution is not necessary. 

2. THEORY 

A boundary-value problem of the sequence has the 
following general form, 

x' = Ax + f, (2) 
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where z is the scalar independent spatial variable, A is the 
2n x 2n (note that the number of states is even) state matrix 
which is, in general, z dependent; x is the 2n × 1 state vector, 
and x' is its z-derivative; and finally, f is the inhomogeneous 
term which may be dependent on the preceding solutions of 
the sequence. Equation (2) is subjected to boundary condi- 
tions (in general, inhomogeneous) at both ends, 

P x = g ,  at z = 0 ,  Q x = h ,  at z = l ,  (3) 

where P and Q are constant matrices of size n × 2n, each 
corresponding to n boundary constraints at each end; and g 
and h are n × 1 vectors. The matrices and vectors can be 
complex in general. The system (2), (3) typically represents 
an order of the expansion in Eq. (1), where A and x repre- 
sent L~ and Vk for some k >I 0. In general, L n are not equal 
and therefore A is different for each order of the expansion. 
For many physical problems, however, the interest is to 
determine the order in e where the operator L~ (k >~ 1) is 
equal to L o, implying that a solvability condition will exist. 
The inhomogeneous terms f, g, and h depend, again, on the 
predecessors vk. 

Since the system of Eqs. (2), (3) is linear in the state, i fx  
is a solution, then x + x o will also be a solution, where Xo is 
a scalar multiple of Vo. Thus Xo satisfies the homogeneous 
problem, 

x' -- Ax; (4) 

P x = 0 ,  at z = 0 ,  Q x = 0 ,  at z = l .  (5) 

The solution of the above homogeneous problem is simple 
by the shooting technique. The shooting technique comes 
from the idea that one can choose a 2n x n fundamental 
matrix, Xo, w h i c h  contains n fundamental solutions 
(columns vectors) satisfying the homogenous boundary 
condition at the starting end, PXo = 0. Thus the solution Xo, 
is spanned by X 0, 

X 0 = X o a o ,  

where ao is a n x 1 column vector of constants. Without loss 
of generality, we choose z = 0 to be the starting end. For 
example, we can choose Xo(0) to be in the form of 

P11P2~, 
Xo(O) = [ -  I .  J 

For non-trivial ao, we require 

det[QXo] =0. (7) 

The condition above places a constraint of the parameter 
set. Therefore, solutions can only exist on a hyperspace of a 
lower dimension of the parameter space. In general, an 
iterative method has to be used to compute the parameters 
of non-trivial solutions. 

With the inhomogeneous terms in Eqs. (2), (3), a solution 
may or may not exist, since now these inhomogeneous 
terms cannot be arbitrary. They are constrained not entirely 
separately, but together by a solvability condition (a result 
known as the Fredholm's alternative) instead, in order to 
preserve consistency. Since the inhomogeneous terms 
depend on the lower order solutions, the solvability condi- 
tion therefore serves to determine the subsequent terms in 
the expansion in a unique fashion. More conventionally, the 
solvability conditions can be obtained by a projection of the 
equation space onto the adjoint solution space. First, one 
has to solve an adjoint problem like the homogeneous 
problem. Then, one has to perform an averaging. The job 
can be quite tedious. Consider, for example, a more restric- 
tive case corresponding to f # 0 and g = 0 and h = 0. The 
adjoint problem can be defined as 

i '  = - A + i ,  (8) 

where the superscript " + "  denotes the adjoint operator 
(transpose and complex conjugate). The problem is then 
subject to boundary conditions 

P i = 0 ,  at z = 0 ,  0 i = 0 ,  at z = l ,  (9) 

where the boundary matrices are chosen so that ~ satisfies 

xff(O) ~(0) = xff(1) ~(1). (lO) 

In autonomous problems, x~-(0)~(0)= 0 also implies that 
x~-(1)~(1)=0; thus one simply defines ~,(0) such that 
x~-(0) ~(0)= 0; P is defined accordingly so that P~,(0)= 0. 
For non-autonomous problems, the selection of P and t) 
may involve some intelligent judgements. But, in general, 
there are numerous ways to define the adjoint problem in 
this manner. Once ~, is found, the solvability condition is 
given by 

1 

Io ~ + f d z = 0 .  (11) 

where P = [P I IP 2 ]  such that P1 is non-singular. At the 
matching end, z = 1, the boundary condition requires 

(QXo) ao = O. (6) 

Although the method is in principle valid, there may be 
practical problems. If the projection for the particular 
choice of ~ is weak, then Eq. (11) can incur large errors, 
especially for large n, due to the summation of many entries 
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in the vectors which in general have large variations of 
magnitude. As this type of boundary-value problem seems 
quite elementary, little attention has been focused on an 
improved method to solve the problem. Here, we show that 
with our shooting technique, a simultaneous treatment of 
both the solution and the solvability condition becomes 
possible, by splitting the general solution into the sum of a 
particular solution and a homogeneous solution. For an 
order when L k is different from L0, no solvability condition 
exists. The homogeneous solution is employed to satisfy the 
boundary conditions while the particular solution is 
employed to satisfy the governing equation. For an order 
when Lk equals L0, an additional solvability condition will 
be sought. Since the inhomogeneous forcing may have 
secular contributions, the trick here is to use the fundamen- 
tal set of the zeroth order solution to span the current 
order's homogeneous solution. The solvability condition is 
then determined on the level of the boundary conditions. 
No additional integration such as those of Eq. (11 ) will be 
required. 

Following this idea we let the solution of Eqs. (2, 3), x, be 
split, such that 

x = X h a h ' - l -  X p .  (12) 

The particular solution Xp satisfies 

PXp(0) = g. 

Given P and g, Xp(0) can be solved. I fP  contains the control 
of the problem, then the condition above will only provide 
a guess, which has to be improved iteratively. We now 
integrate Xp forward according to 

x =Ax +f, 

from z = 0 to z = 1. At z = 1, the coefficients a h are now 
determined from 

(QXh) ah : (h - Qxp).  (13) 

The above equation can be inverted to give ah. In the case 
when Xh is equal to X0, then the system is self-consistent, 
provided 

~+(h - Qxp) = 0, (14) 

where i satisfies 

(X~-Q+) h =0. (15) 

Now ~ is the adjoint of ao. Equation (14) is the solvability 
condition in a boundary form. If the control parameter 

occurs in the starting boundary or in both boundaries, then 
the solvability condition can only be solved iteratively. 

Consider the previous case again, where f ~ 0 but g = 0 
and h =0. Suppose f = fl + Rf2, where R is the control. 
Now let xp = Xpl + Xp2. The latter satisfies 

Xpl = AXpl + f l ,  Xp2 = Axp2 + f2. 

Then from Eq. (14), R is determined by 

R : ~.+(h - QXpl  ) (16) 

+ Qxp2 

3. EXAMPLES 

The shooting scheme has been used in computing solu- 
tions of the problem of delayed onset in convection of a 
plane layer of fluid, subjected to small oscillations in the 
wall. A sample of examples will be briefly discussed here. 

i. The Rayleigh-B~nard Convection 

For Rayleigh-Brnard convection [1],  the control is 
the supercritical increment of the Rayleigh number in the 
governing equation. For Marangoni convection [2], the 
control is the increment of Marangoni number that appears 
in one of the free surface conditions. When both buoyancy 
and surface tension effects are allowed simultaneously, we 
have both controls. We refer readers to the references for the 
details of the problems. Here we provide only some com- 
putational results of these problems to illustrate the use of 
the scheme. Consider the problem of [ 1 ], where the upper 
plate of the layer is held fixed. In [ 1, Fig. 1 ], the family of 
curves (i), (ii), and (iv) show the onset curves of the control 
parameter R/Pr 2 versus the modulation frequency f12 Pr for 
Prandtl numbers Pr equal to 0.5, 1.0, and 10.0, respectively. 
These curves were obtained by explicit integration of their 
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Eqs. (3.11 ) and (3.12). Here we reproduce the set of curves 
using our shooting scheme, Eqs. (12)-(16). We use a 20-step 
integration, which is significantly less than that used in [ 1 ]. 
In Fig. 1, the higher solid, middle dashed, and lower solid 
lines correspond to Pr = 0.5, 1.0, and 10.0, respectively. 

number. The single solvability condition governing these 
two controls is given by 

M - b R = c ;  (18) 

where b and c are defined as 

ii. The Marangoni and Rayleigh-BOnard Convection 

Since Rayleigh-B6nard convection does not involve 
inhomogeneous terms in the boundary conditions, the 
flexibility of our shooting scheme has not been fully 
demonstrated. In a recent paper, we study the delayed onset 
of the mixed Marangoni and Rayleigh-B6nard convection 
[2]  and use the scheme for the computations. The 
boundary conditions involve a deformable surface and are 
significantly more complex [2].  Consider 

X' = Ax + fl + Rf2 (17) 

subject to 

Qx=O,  at z = l ,  

P x = h ~ + M h 2 ,  at z=O. 

b (~-+Px#) ~ + ( P X p l - h i )  
C ~ 

(i+h2) ' (~ +h2) 

The vector ~ satisfies (X~-P +) ~ = 0; X0 is a matrix of the 
column vectors which form half of the fundamental set of 
the homogeneous system satisfying the wall condition 
Qx = 0 at z = 1; and finally Xp/, j = 1, 2, satisfy, respectively, 

x ' = A x  + f/, j =  1,2, 

with xpj = 0 at z = 1. In Fig. 2, we show a sweep of the coef- 
ficients b (solid) and c (dashed) of the solvability condition. 
Also shown is the value of - c / b  (long-dashed). The  
horizontal axis presents the Prandtl number. The other 
parameters of the example correspond to a long-wavelength 
regime of the convection: f l=  1.2, k=0 .1 ,  Z =  3.4, and 
Bo = 0.067, where k is the wavenumber, Z is the Galileo 
number, and Bo is the Bond number. 

x~here x is the state vector; fj and hj, j = 1, 2, are known 
vector functions. Now in addition to the control R, M 
represents the supercritical increment in the Marangoni 
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4. R E M A R K S  

The shooting scheme provided here is simple and easy to 
implement numerically. It permits an efficient means for 
solving the sequence of boundary problems, where the state 
matrix can be non-self-adjoint and the boundary conditions 
can be inhomogeneous and non-symmetric. Multiple 
control parameters are permitted and they can occur in the 
governing equation or in the boundary conditions. The 
scheme is less sensitive to boundary errors. Thus it reduces 
the need for very fine-step integrations. 
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